The boring process can be executed on various machine tools, including general-purpose or universal machines, such as lathes or milling machines, and machines designed to specialize in boring as a primary function, such as jig borers and boring machines or boring mills, which include vertical boring mills (workpiece rotates around a vertical axis while boring bar/head moves linearly; essentially a vertical lathe) and horizontal boring mills (workpiece sits on a table while the boring bar rotates around a horizontal axis; essentially a specialized horizontal milling machine).
Lathe boring is a cutting operation that uses a single-point cutting tool or a boring head to produce conical or cylindrical surfaces by enlarging an existing opening in a workpiece. For nontapered holes, the cutting tool moves parallel to the axis of rotation. For tapered holes, the cutting tool moves at an angle to the axis of rotation. Geometries ranging from simple to extremely complex in a variety of diameters can be produced using boring applications. Boring is one of the most basic lathe operations next to turning and drilling.
Lathe boring usually requires that the workpiece be held in the chuck and rotated. As the workpiece is rotated, a boring bar with an insert attached to the tip of the bar is fed into an existing hole. When the cutting tool engages the workpiece, a chip is formed. Depending on the type of tool used, the material, and the feed rate, the chip may be continuous or segmented. The surface produced is called a bore. The geometry produced by lathe boring is usually of two types: straight holes and tapered holes. Several diameters can also be added to each shape hole if required. To produce a taper, the tool may be fed at an angle to the axis of rotation or both feed and axial motions may be concurrent. Straight holes and counterbores are produced by moving the tool parallel to the axis of workpiece rotation.
Request a quoteQualiturn Products Limited
7 Fountain Drive
Hertford
SG13 7UB
tel. +44 (0) 1992 584499
email. info@qualiturn.co.uk